A multi-layer method to study genome-scale positions of nucleosomes.

نویسندگان

  • Vito Di Gesù
  • Giosuè Lo Bosco
  • Luca Pinello
  • Guo-Cheng Yuan
  • Davide F V Corona
چکیده

The basic unit of eukaryotic chromatin is the nucleosome, consisting of about 150 bp of DNA wrapped around a protein core made of histone proteins. Nucleosomes position is modulated in vivo to regulate fundamental nuclear processes. To measure nucleosome positions on a genomic scale both theoretical and experimental approaches have been recently reported. We have developed a new method, Multi-Layer Model (MLM), for the analysis of nucleosome position data obtained with microarray-based approach. The MLM is a feature extraction method in which the input data is processed by a classifier to distinguish between several kinds of patterns. We applied our method to simulated-synthetic and experimental nucleosome position data and found that besides a high nucleosome recognition and a strong agreement with standard statistical methods, the MLM can identify distinct classes of nucleosomes, making it an important tool for the genome wide analysis of nucleosome position and function. In conclusion, the MLM allows a better representation of nucleosome position data and a significant reduction in computational time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using informative Multinomial-Dirichlet prior in a t-mixture with reversible jump estimation of nucleosome positions for genome-wide profiling.

Genome-wide mapping of nucleosomes has revealed a great deal about the relationships between chromatin structure and control of gene expression. Recent next generation CHIP-chip and CHIP-Seq technologies have accelerated our understanding of basic principles of chromatin organization. These technologies have taught us that nucleosomes play a crucial role in gene regulation by allowing physical ...

متن کامل

Are nucleosome positions in vivo primarily determined by histone–DNA sequence preferences?

Large-scale and genome-wide studies have concluded that approximately 80% of the yeast (Saccharomyces cerevisiae) genome is occupied by positioned nucleosomes. In vivo this nucleosome organization can result from a variety of mechanisms, including the intrinsic DNA sequence preferences for wrapping the DNA around the histone core. Recently, a genome-wide study was reported using massively paral...

متن کامل

NOrMAL: accurate nucleosome positioning using a modified Gaussian mixture model

MOTIVATION Nucleosomes are the basic elements of chromatin structure. They control the packaging of DNA and play a critical role in gene regulation by allowing physical access to transcription factors. The advent of second-generation sequencing has enabled landmark genome-wide studies of nucleosome positions for several model organisms. Current methods to determine nucleosome positioning first ...

متن کامل

Genomic studies and computational predictions of nucleosome positions and formation energies.

Chromatin is a complex of DNA, RNA, and proteins whose primary function is to package genomic DNA into the tight confines of a cell nucleus. A fundamental repeating unit of chromatin is the nucleosome, an octamer of histone proteins around which 147 base pairs of DNA are wound in almost two turns of a left-handed superhelix. Chromatin is a dynamic structure that exerts profound influence on reg...

متن کامل

Predicting nucleosome positions on the DNA: combining intrinsic sequence preferences and remodeler activities

Nucleosome positions on the DNA are determined by the intrinsic affinities of histone proteins to a given DNA sequence and by the ATP-dependent activities of chromatin remodeling complexes that can translocate nucleosomes with respect to the DNA. Here, we report a theoretical approach that takes into account both contributions. In the theoretical analysis two types of experiments have been cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genomics

دوره 93 2  شماره 

صفحات  -

تاریخ انتشار 2009